Title: | Hadoop InteractiVE |
---|---|
Description: | Hadoop InteractiVE facilitates distributed computing via the MapReduce paradigm through R and Hadoop. An easy to use interface to Hadoop, the Hadoop Distributed File System (HDFS), and Hadoop Streaming is provided. |
Authors: | Ingo Feinerer [aut], Stefan Theussl [aut, cre] |
Maintainer: | Stefan Theussl <[email protected]> |
License: | GPL-3 |
Version: | 0.2-2 |
Built: | 2024-11-05 05:13:13 UTC |
Source: | https://github.com/cran/hive |
Functions for showing/changing Hadoop configuration.
hive_get_parameter( x, henv = hive() ) hive_get_masters( henv = hive() ) hive_get_workers( henv = hive() ) hive_get_nreducer( henv = hive() ) hive_set_nreducer( n, henv = hive() )
hive_get_parameter( x, henv = hive() ) hive_get_masters( henv = hive() ) hive_get_workers( henv = hive() ) hive_get_nreducer( henv = hive() ) hive_set_nreducer( n, henv = hive() )
henv |
An object containing the local Hadoop configuration. |
x |
A character string naming the parameter in the Hadoop configuration. |
n |
An integer specifying the number of reducers to be used in
|
The function hive_get_parameter()
is used to get parameters from
the Hadoop cluster configuration.
The functions hive_get_workers()
and hive_get_masters()
return the hostnames of the configured nodes in the cluster.
The functions hive_get_nreducer()
and hive_set_nreducer()
are used to get/set the number of reducers which are used in Hadoop
Streaming using hive_stream()
.
hive_get_parameter()
returns the specified parameter as a character string.
hive_get_workers()
returns a character vector naming the hostnames
of the configured worker nodes in the cluster.
hive_get_masters()
returns a character vector of the hostnames of
the configured master nodes in the cluster.
hive_get_nreducer()
returns an integer representing the number
of configured reducers.
Stefan Theussl
Apache Hadoop cluster configuration (https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/ClusterSetup.html#Configuring_Hadoop_in_Non-Secure_Mode).
## Which tmp directory is set in the Hadoop configuration? ## Not run: hive_get_parameter("hadoop.tmp.dir") ## The master nodes of the cluster ## Not run: hive_get_masters() ## The worker nodes of the cluster ## Not run: hive_get_workers() ## The number of configured reducers ## Not run: hive_get_nreducer()
## Which tmp directory is set in the Hadoop configuration? ## Not run: hive_get_parameter("hadoop.tmp.dir") ## The master nodes of the cluster ## Not run: hive_get_masters() ## The worker nodes of the cluster ## Not run: hive_get_workers() ## The number of configured reducers ## Not run: hive_get_nreducer()
Functions providing high-level access to the Hadoop Distributed File System (HDFS).
DFS_cat( file, con = stdout(), henv = hive() ) DFS_delete( file, recursive = FALSE, henv = hive() ) DFS_dir_create( path, henv = hive() ) DFS_dir_exists( path, henv = hive() ) DFS_dir_remove( path, recursive = TRUE, henv = hive() ) DFS_file_exists( file, henv = hive() ) DFS_get_object( file, henv = hive() ) DFS_read_lines( file, n = -1L, henv = hive() ) DFS_rename( from, to, henv = hive() ) DFS_list( path = ".", henv = hive() ) DFS_tail( file, n = 6L, size = 1024L, henv = hive() ) DFS_put( files, path = ".", henv = hive() ) DFS_put_object( obj, file, henv = hive() ) DFS_write_lines( text, file, henv = hive() )
DFS_cat( file, con = stdout(), henv = hive() ) DFS_delete( file, recursive = FALSE, henv = hive() ) DFS_dir_create( path, henv = hive() ) DFS_dir_exists( path, henv = hive() ) DFS_dir_remove( path, recursive = TRUE, henv = hive() ) DFS_file_exists( file, henv = hive() ) DFS_get_object( file, henv = hive() ) DFS_read_lines( file, n = -1L, henv = hive() ) DFS_rename( from, to, henv = hive() ) DFS_list( path = ".", henv = hive() ) DFS_tail( file, n = 6L, size = 1024L, henv = hive() ) DFS_put( files, path = ".", henv = hive() ) DFS_put_object( obj, file, henv = hive() ) DFS_write_lines( text, file, henv = hive() )
henv |
An object containing the local Hadoop configuration. |
file |
a character string representing a file on the DFS. |
files |
a character string representing files located on the local file system to be copied to the DFS. |
n |
an integer specifying the number of lines to read. |
obj |
an R object to be serialized to/from the DFS. |
path |
a character string representing a full path name in the
DFS (without the leading |
recursive |
logical. Should elements of the path other than the last be deleted recursively? |
size |
an integer specifying the number of bytes to be read. Must
be sufficiently large otherwise |
text |
a (vector of) character string(s) to be written to the DFS. |
con |
A connection to be used for printing the output provided by
|
from |
a character string representing a file or directory on the DFS to be renamed. |
to |
a character string representing the new filename on the DFS. |
The Hadoop Distributed File System (HDFS) is typically part of a Hadoop cluster or can be used as a stand-alone general purpose distributed file system (DFS). Several high-level functions provide easy access to distributed storage.
DFS_cat
is useful for producing output in user-defined
functions. It reads from files on the DFS and typically prints the
output to the standard output. Its behaviour is similar to the base
function cat
.
DFS_dir_create
creates directories with the given path names if
they do not already exist. It's behaviour is similar to the base
function dir.create
.
DFS_dir_exists
and DFS_file_exists
return a logical
vector indicating whether the directory or file respectively named by
its argument exist. See also function file.exists
.
DFS_dir_remove
attempts to remove the directory named in its
argument and if recursive
is set to TRUE
also attempts
to remove subdirectories in a recursive manner.
DFS_list
produces a character vector of the names of files
in the directory named by its argument.
DFS_read_lines
is a reader for (plain text) files stored on the
DFS. It returns a vector of character strings representing lines in
the (text) file. If n
is given as an argument it reads that
many lines from the given file. It's behaviour is similar to the base
function readLines
.
DFS_put
copies files named by its argument to a given path in
the DFS.
DFS_put_object
serializes an R object to the DFS.
DFS_write_lines
writes a given vector of character strings to a
file stored on the DFS. It's behaviour is similar to the base
function writeLines
.
DFS_delete()
, DFS_dir_create()
, and DFS_dir_remove
return a logical value indicating if the
operation succeeded for the given argument.
DFS_dir_exists()
and DFS_file_exists()
return TRUE
if
the named directories or files exist in the HDFS.
DFS_get__object()
returns the deserialized object stored in a
file on the HDFS.
DFS_list()
returns a character vector representing the directory listing of the corresponding
path on the HDFS.
DFS_read_lines()
returns a character vector of length the
number of lines read.
DFS_tail()
returns a character vector of length the number of
lines to read until the end of a file on the HDFS.
Stefan Theussl
The Hadoop Distributed File System (https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html).
## Do we have access to the root directory of the DFS? ## Not run: DFS_dir_exists("/") ## Some self-explanatory DFS interaction ## Not run: DFS_list( "/" ) DFS_dir_create( "/tmp/test" ) DFS_write_lines( c("Hello HDFS", "Bye Bye HDFS"), "/tmp/test/hdfs.txt" ) DFS_list( "/tmp/test" ) DFS_read_lines( "/tmp/test/hdfs.txt" ) ## End(Not run) ## Serialize an R object to the HDFS ## Not run: foo <- function() "You got me serialized." sro <- "/tmp/test/foo.sro" DFS_put_object(foo, sro) DFS_get_object( sro )() ## End(Not run) ## finally (recursively) remove the created directory ## Not run: DFS_dir_remove( "/tmp/test" )
## Do we have access to the root directory of the DFS? ## Not run: DFS_dir_exists("/") ## Some self-explanatory DFS interaction ## Not run: DFS_list( "/" ) DFS_dir_create( "/tmp/test" ) DFS_write_lines( c("Hello HDFS", "Bye Bye HDFS"), "/tmp/test/hdfs.txt" ) DFS_list( "/tmp/test" ) DFS_read_lines( "/tmp/test/hdfs.txt" ) ## End(Not run) ## Serialize an R object to the HDFS ## Not run: foo <- function() "You got me serialized." sro <- "/tmp/test/foo.sro" DFS_put_object(foo, sro) DFS_get_object( sro )() ## End(Not run) ## finally (recursively) remove the created directory ## Not run: DFS_dir_remove( "/tmp/test" )
High-level functions to control Hadoop framework.
hive( new ) .hinit( hadoop_home ) hive_start( henv = hive() ) hive_stop( henv = hive() ) hive_is_available( henv = hive() )
hive( new ) .hinit( hadoop_home ) hive_start( henv = hive() ) hive_stop( henv = hive() ) hive_is_available( henv = hive() )
hadoop_home |
A character string pointing to the local Hadoop
installation. If not given, then |
henv |
An object containing the local Hadoop configuration. |
new |
An object specifying the Hadoop environment. |
High-level functions to control Hadoop framework.
The function hive()
is used to get/set the Hadoop cluster
object. This object consists of an environment holding information
about the Hadoop cluster.
The function .hinit()
is used to initialize a Hadoop cluster. It
retrieves most configuration options via searching the
HADOOP_HOME
directory given as an environment variable, or,
alternatively, by searching the /etc/hadoop
directory in case
the https://www.cloudera.com distribution (i.e., CDH3) is used.
The functions hive_start()
and hive_stop()
are used to
start/stop the Hadoop framework. The latter is not applicable for
system-wide installations like CDH3.
The function hive_is_available()
is used to check the status of
a Hadoop cluster.
hive()
returns an object of class "hive"
representing
the currently used cluster configuration.
hive_is_available()
returns TRUE
if the given Hadoop
framework is running.
Stefan Theussl
Apache Hadoop: https://hadoop.apache.org/.
Cloudera's distribution including Apache Hadoop (CDH): https://www.cloudera.com/downloads/cdh.html.
## read configuration and initialize a Hadoop cluster: ## Not run: h <- .hinit( "/etc/hadoop" ) ## Not run: hive( h ) ## Start hadoop cluster: ## Not run: hive_start() ## check the status of an Hadoop cluste: ## Not run: hive_is_available() ## return cluster configuration 'h': hive() ## Stop hadoop cluster: ## Not run: hive_stop()
## read configuration and initialize a Hadoop cluster: ## Not run: h <- .hinit( "/etc/hadoop" ) ## Not run: hive( h ) ## Start hadoop cluster: ## Not run: hive_start() ## check the status of an Hadoop cluste: ## Not run: hive_is_available() ## return cluster configuration 'h': hive() ## Stop hadoop cluster: ## Not run: hive_stop()
High-level R function for using Hadoop Streaming.
hive_stream( mapper, reducer, input, output, henv = hive(), mapper_args = NULL, reducer_args = NULL, cmdenv_arg = NULL, streaming_args = NULL)
hive_stream( mapper, reducer, input, output, henv = hive(), mapper_args = NULL, reducer_args = NULL, cmdenv_arg = NULL, streaming_args = NULL)
mapper |
a function which is executed on each worker node. The so-called mapper typically maps input key/value pairs to a set of intermediate key/value pairs. |
reducer |
a function which is executed on each worker node. The so-called reducer reduces a set of intermediate values which share a key to a smaller set of values. If no reducer is used leave empty. |
input |
specifies the directory holding the data in the DFS. |
output |
specifies the output directory in the DFS containing the results after the streaming job finished. |
henv |
Hadoop local environment. |
mapper_args |
additional arguments to the mapper. |
reducer_args |
additional arguments to the reducer. |
cmdenv_arg |
additional arguments passed as environment variables to distributed tasks. |
streaming_args |
additional arguments passed to the Hadoop
Streaming utility. By default, only the number of reducers will be
set using |
The function hive_stream()
starts a MapReduce job on the given
data located on the HDFS.
Stefan Theussl
Apache Hadoop Streaming (https://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html).
## A simple word count example ## Put some xml files on the HDFS: ## Not run: DFS_put( system.file("defaults/core/", package = "hive"), "/tmp/input" ) ## End(Not run) ## Not run: DFS_put( system.file("defaults/hdfs/hdfs-default.xml", package = "hive"), "/tmp/input" ) ## End(Not run) ## Not run: DFS_put( system.file("defaults/mapred/mapred-default.xml", package = "hive"), "/tmp/input" ) ## End(Not run) ## Define the mapper and reducer function to be applied: ## Note that a Hadoop map or reduce job retrieves data line by line from stdin. ## Not run: mapper <- function(x){ con <- file( "stdin", open = "r" ) while (length(line <- readLines(con, n = 1L, warn = FALSE)) > 0) { terms <- unlist(strsplit(line, " ")) terms <- terms[nchar(terms) > 1 ] if( length(terms) ) cat( paste(terms, 1, sep = "\t"), sep = "\n") } } reducer <- function(x){ env <- new.env( hash = TRUE ) con <- file( "stdin", open = "r" ) while (length(line <- readLines(con, n = 1L, warn = FALSE)) > 0) { keyvalue <- unlist( strsplit(line, "\t") ) if( exists(keyvalue[1], envir = env, inherits = FALSE) ){ assign( keyvalue[1], get(keyvalue[1], envir = env) + as.integer(keyvalue[2]), envir = env ) } else { assign( keyvalue[1], as.integer(keyvalue[2]), envir = env ) } } env <- as.list(env) for( term in names(env) ) writeLines( paste(c(term, env[[term]]), collapse ="\t") ) } hive_set_nreducer(1) hive_stream( mapper = mapper, reducer = reducer, input = "/tmp/input", output = "/tmp/output" ) DFS_list("/tmp/output") head( DFS_read_lines("/tmp/output/part-00000") ) ## End(Not run) ## Don't forget to clean file system ## Not run: DFS_dir_remove("/tmp/input") ## Not run: DFS_dir_remove("/tmp/output")
## A simple word count example ## Put some xml files on the HDFS: ## Not run: DFS_put( system.file("defaults/core/", package = "hive"), "/tmp/input" ) ## End(Not run) ## Not run: DFS_put( system.file("defaults/hdfs/hdfs-default.xml", package = "hive"), "/tmp/input" ) ## End(Not run) ## Not run: DFS_put( system.file("defaults/mapred/mapred-default.xml", package = "hive"), "/tmp/input" ) ## End(Not run) ## Define the mapper and reducer function to be applied: ## Note that a Hadoop map or reduce job retrieves data line by line from stdin. ## Not run: mapper <- function(x){ con <- file( "stdin", open = "r" ) while (length(line <- readLines(con, n = 1L, warn = FALSE)) > 0) { terms <- unlist(strsplit(line, " ")) terms <- terms[nchar(terms) > 1 ] if( length(terms) ) cat( paste(terms, 1, sep = "\t"), sep = "\n") } } reducer <- function(x){ env <- new.env( hash = TRUE ) con <- file( "stdin", open = "r" ) while (length(line <- readLines(con, n = 1L, warn = FALSE)) > 0) { keyvalue <- unlist( strsplit(line, "\t") ) if( exists(keyvalue[1], envir = env, inherits = FALSE) ){ assign( keyvalue[1], get(keyvalue[1], envir = env) + as.integer(keyvalue[2]), envir = env ) } else { assign( keyvalue[1], as.integer(keyvalue[2]), envir = env ) } } env <- as.list(env) for( term in names(env) ) writeLines( paste(c(term, env[[term]]), collapse ="\t") ) } hive_set_nreducer(1) hive_stream( mapper = mapper, reducer = reducer, input = "/tmp/input", output = "/tmp/output" ) DFS_list("/tmp/output") head( DFS_read_lines("/tmp/output/part-00000") ) ## End(Not run) ## Don't forget to clean file system ## Not run: DFS_dir_remove("/tmp/input") ## Not run: DFS_dir_remove("/tmp/output")